Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
Hum Cell ; 37(3): 689-703, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38551774

RESUMO

Polycystic ovary syndrome (PCOS) is a complex gynaecological endocrine disease that occurs in women of childbearing age. The pathogenesis of PCOS is still unclear and further exploration is needed. Here, proteomic analysis indicated that the expression of farnesyl diphosphate synthase (FDPS) protein in ovarian tissue of PCOS mice was significantly decreased. The purpose of this study is to investigate the relationship between potential biomarkers of PCOS and granulosa cells (GCs) function. The mechanisms by which FDPS affected the proliferation of granulosa cells were also explored both in vitro and in vivo. We found that knockdown of FDPS inhibited the proliferation of KGN (human ovarian granulosa cell line), while overexpression of FDPS had the opposite effect. FDPS activated Rac1 (Rac Family Small GTPase 1) activity and regulated MAPK/ERK signalling pathway, which affecting the proliferation of KGN cells significantly. In addition, treatment with the adeno-associated virus (AAV)-FDPS reverses the dehydroepiandrosterone (DHEA)-induced PCOS-phenotype in mice. Our data indicated that FDPS could regulate the proliferation of ovarian GCs by modulating MAPK/ERK (mitogen-activated protein kinase/extracellular regulated protein kinases) pathway via activating Rac1 activity. These findings suggest that FDPS could be of great value for the regulation of ovarian granulosa cell function and the treatment of PCOS.


Assuntos
MicroRNAs , Síndrome do Ovário Policístico , Humanos , Feminino , Camundongos , Animais , Síndrome do Ovário Policístico/genética , Geraniltranstransferase/metabolismo , Proteômica , Células da Granulosa/metabolismo , Proliferação de Células , MicroRNAs/metabolismo , Apoptose , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
2.
J Agric Food Chem ; 71(11): 4599-4614, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36880571

RESUMO

Jujube (Ziziphus jujuba Mill.) is rich in valuable bioactive triterpenoids. However, the regulatory mechanism underlying triterpenoid biosynthesis in jujube remains poorly studied. Here, we characterized the triterpenoid content in wild jujube and cultivated jujube. The triterpenoid content was higher in wild jujube than in cultivated jujube, triterpenoids were most abundant in young leaves, buds, and later stages of development. The transcriptome analysis and correlation analysis showed that differentially expressed genes (DEGs) were enriched in the terpenoid synthesis pathways, and triterpenoids content was strongly correlated with farnesyl diphosphate synthase (ZjFPS), squalene synthase (ZjSQS), and transcription factors ZjMYB39 and ZjMYB4 expression. Gene overexpression and silencing analysis indicated that ZjFPS and ZjSQS were key genes in triterpenoid biosynthesis and transcription factors ZjMYB39 and ZjMYB4 regulated triterpenoid biosynthesis. Subcellular localization experiments showed that ZjFPS and ZjSQS were localized to the nucleus and endoplasmic reticulum and ZjMYB39 and ZjMYB4 were localized to the nucleus. Yeast one-hybrid, glucuronidase activity, and dual-luciferase activity assays suggested that ZjMYB39 and ZjMYB4 regulate triterpenoid biosynthesis by directly binding and activating the promoters of ZjFPS and ZjSQS. These findings provide insights into the underlying regulatory network of triterpenoids metabolism in jujube and lay theoretical and practical foundation for molecular breeding.


Assuntos
Triterpenos , Ziziphus , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Farnesil-Difosfato Farnesiltransferase/genética , Farnesil-Difosfato Farnesiltransferase/metabolismo , Geraniltranstransferase/metabolismo , Triterpenos/metabolismo , Frutas/metabolismo
3.
Metab Eng ; 77: 41-52, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893914

RESUMO

Sesquiterpenes represent a large class of terpene compounds found in plants with broad applications such as pharmaceuticals and biofuels. The plastidial MEP pathway in ripening tomato fruit is naturally optimized to provide the 5-carbon isoprene building blocks of all terpenes for production of the tetraterpene pigment lycopene and other carotenoids, making it an excellent plant system to be engineered for production of high-value terpenoids. We reconstituted and enhanced the pool of sesquiterpene precursor farnesyl diphosphate (FPP) in plastids of tomato fruit by overexpressing the fusion gene DXS-FPPS encoding a fusion protein of 1-deoxy-D-xylulose 5-phosphate synthase (DXS) linked with farnesyl diphosphate synthase (originally called farnesyl pyrophosphate synthase, and abbreviated as FPPS) under the control of fruit-ripening specific polygalacturonase (PG) promoter concomitant with substantial reduction in lycopene content and large production of FPP-derived squalene. The supply of precursors achieved by the fusion gene expression can be harnessed by an engineered sesquiterpene synthase that is retargeted to plastid to engineer high-yield sesquiterpene production in tomato fruit, offering an effective production system for high-value sesquiterpene ingredients.


Assuntos
Sesquiterpenos , Solanum lycopersicum , Solanum lycopersicum/genética , Licopeno/metabolismo , Frutas/genética , Frutas/metabolismo , Sesquiterpenos/metabolismo , Terpenos/metabolismo , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Plastídeos/genética , Plastídeos/metabolismo
4.
Plant Physiol Biochem ; 196: 587-595, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36780721

RESUMO

Shikonin is a red naphthoquinone natural product from plants with high economical and medical values. The para-hydroxybenzoic acid geranyltransferase (PGT) catalyzes the key regulatory step of shikonin biosynthesis. PGTs from Lithospermum erythrorhizon have been well-characterized and used in industrial shikonin production. However, its perennial medicinal plant Arnebia euchroma accumulates much more pigment and the underlying mechanism remains obscure. Here, we discovered and characterized the different isoforms of AePGTs. Phylogenetic study and structure modeling suggested that the N-terminal of AePGT6 contributed to its highest activity among 7 AePGTs. Indeed, AePGT2 and AePGT3 fused with 60 amino acids from the N-terminal of AePGT6 showed even higher activity than AePGT6, while native AePGT2 and AePGT3 don't have catalytic activity. Our result not only provided a mechanistic explanation of high shikonin contents in Arnebia euchroma but also engineered a best-performing PGT to achieve the highest-to-date production of 3-geranyl-4-hydroxybenzoate acid, an intermedium of shikonin.


Assuntos
Boraginaceae , Naftoquinonas , Filogenia , Boraginaceae/genética , Boraginaceae/metabolismo , Naftoquinonas/química , Naftoquinonas/metabolismo , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo
5.
Prep Biochem Biotechnol ; 53(8): 988-994, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36639146

RESUMO

Farnesyl diphosphate synthase (FPPS) is a crucial protein in terpenoid production. However, its industrial application is limited owing to its low solubility in Escherichia coli. In this study, we focused on ispA encoding FPPS and designed a fusion expression system to reduce inclusion body (IB) formation. Among the chosen fusion tags, the GB1-domain (GB1) exhibited the highest ability to solubilize the recombinant protein. Increased rare tRNA abundance not only improved the GB1-FPPS yield but also increased its soluble level. A "one-step" method for the acquisition of soluble FPPS was also considered. By combining GB1-FPPS expression and Tobacco Etch Virus protease (TEVp) cleavage in vivo, a controllable GB1-FPPS "self-cleavage" system was constructed. Overall, this study provides an efficient approach for obtaining soluble forms of FPPS, which show great potential for use in the soluble expression of other homologous diphosphate synthase.


Assuntos
Escherichia coli , Geraniltranstransferase , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Terpenos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
J Biomol Struct Dyn ; 41(5): 1978-1987, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35037838

RESUMO

Helicoverpa armigera (Ha), a polyphagous pest, causes significant damage to several crop plants, including cotton. The control of this cosmopolitan pest is largely challenging due to the development of resistance to existing management practices. The Juvenile Hormone (JH) plays a pivotal role in the life cycle of insects by regulating their morphogenetic and gonadotropic development. Hence, enzymes involved in JH biosynthesis are an attractive target for the development of selective insecticides. Farnesyl diphosphate synthase (FPPS), a member protein of (E)-prenyl-transferases, is one of the most crucial enzymes in the biosynthetic pathway of JHs. It catalyzes the condensation of isopentenyl diphosphate (IPP) with dimethylallyl diphosphate (DMAPP), forming farnesyl diphosphate (FPP), a precursor of JH. The study was designed to identify an effective small inhibitory molecule that could inhibit the activity of Helicoverpa armigera - FPPS (HaFPPS) for an effective pest control intervention. Therefore, a 3D model of FPPS protein was generated using homology modeling. The FooDB database library of small molecules was selected for virtual screening, following which binding affinities were evaluated using docking studies. Three top-scored molecules were analyzed for various pharmacophore properties. Further, molecular dynamics (MD) simulation analysis showed that the identified molecules (mitraphylline-ZINC1607834, chlorogenic acid-ZINC2138728 and llagate-ZINC3872446) had a reasonably acceptable binding affinity for HaFPPS and resulted in the formation of a stable HaFPPS-inhibitor(s) complex. The identified phytochemical molecules may be used as potent inhibitors of HaFPPS thus, paving the way for further developing environment-friendly insect growth regulator(s). Communicated by Ramaswamy H. Sarma.


Assuntos
Geraniltranstransferase , Mariposas , Animais , Geraniltranstransferase/química , Geraniltranstransferase/metabolismo
7.
Cell Cycle ; 22(6): 666-679, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36310380

RESUMO

This study investigated the effects of ibandronate (IBN) on cardiomyopathy remodeling in diabetic rats. A rat model of diabetic cardiomyopathy (DCM) was established by supplementing them with a high-calorie diet combined with a low dose of streptozotocin (STZ). The diabetic rats received IBN (5 µg/kg per day) or normal saline subcutaneously for 16 weeks. The hematoxylin and eosin (H&E) and Masson's trichrome staining were performed for evaluating the myocardial morphologies of the rats. Echocardiography and cardiac catheter were performed to assess their cardiac functional parameters. The protein levels of connective tissue growth factor (CTGF), farnesyl pyrophosphate synthase (FPPS), and mitogen-activated protein kinase (MAPK) were determined using Western blot analysis. RhoA activation was detected using a small GTP protease-linked immunosorbent assay (GLISA). The diabetic rats showed the development of moderate hyperglycemia, insulin resistance, hyperlipidemia, myocardial fibrosis, FPPS overexpression, cardiac systolic, and diastolic dysfunction. Inhibiting the FPPS could ameliorate myocardial hypertrophy and fibrosis. These anatomical findings were accompanied by a significant improvement in heart function. Furthermore, the inhibition of FPPS, the increased activation of RhoA, and phosphorylation of p38 and extracellular signal-regulated kinase (ERK)1/2 in DCM decreased significantly with the treatment of IBN. This study for the first time demonstrated that the upregulation of FPPS expression might be involved in diabetic myocardial remodeling in diabetes mellitus (DM). In addition, IBN might exert its inhibitory effects on myocardial tissue remodeling by suppressing the RhoA/ERK1/2 and RhoA/p38 MAPK pathways in DCM.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Sesquiterpenos , Ratos , Animais , Diabetes Mellitus Experimental/metabolismo , Sesquiterpenos/metabolismo , Sesquiterpenos/uso terapêutico , Fosfatos de Poli-Isoprenil/metabolismo , Fosfatos de Poli-Isoprenil/uso terapêutico , Miocárdio/patologia , Geraniltranstransferase/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Ácido Ibandrônico/metabolismo , Ácido Ibandrônico/uso terapêutico , Fibrose
8.
Insect Mol Biol ; 32(3): 229-239, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36533988

RESUMO

Farnesyl/geranylgeranyl diphosphate synthases (FPPS/GGPPS) as the short-chain prenyltransferases catalyse the formation of the acyclic precursors (E)-FPP and (E)-GGPP for isoprenoid biosynthesis. Here, we first cloned the cDNAs encoding FPPS and GGPPS in the vetch aphid Megoura viciae (designated as MvFPPS and MvGGPPS). They had an open reading frame of 1185 and 930 bp in length, encoding 395 and 309 amino acids, with a theoretical isoelectric point of 6.52 and 6.21, respectively. Sequence alignment and phylogenetic analysis showed that MvFPPS and MvGGPPS shared the conserved aspartate-rich motifs characterized by all prenyltransferases identified to date and were clustered with their homologues in two large clades. RNA interference (RNAi) combined with gas chromatography/mass spectrometry (GC-MS) analysis showed that both MvFPPS and MvGGPPS were involved in the biosynthesis of alarm pheromone. Spatiotemporal expression profiling showed that the expression of MvFPPS and MvGGPPS was significantly higher in embryos than in other tissues. RNAi and GC-MS performed specifically in embryos corroborated the function of MvFPPS and MvGGPPS. In vitro, enzymatic activity assay and product analysis demonstrated that MvFPPS could catalysed the formation of (E)-FPP using DMAPP or (E)-GPP as the allylic cosubstrates in the presence of IPP, while MvGGPPS could only use (E)-GPP or (E)-FPP as cosubstrates. Functional interaction analysis using RNAi revealed that MvGGPPS exerts unidirectional functional compensation for MvFPPS. Moreover, it can regulate the biosynthesis of alarm pheromone by imposing a negative feedback regulation on MvFPPS. Our study helps to understand the molecular regulatory mechanism of terpenoid biosynthesis in the aphid.


Assuntos
Afídeos , Geraniltranstransferase , Animais , Geraniltranstransferase/genética , Geraniltranstransferase/química , Geraniltranstransferase/metabolismo , Afídeos/metabolismo , Feromônios , Filogenia
9.
Microb Cell Fact ; 21(1): 212, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243714

RESUMO

BACKGROUND: Linalool is a monoterpenoid, also a vital silvichemical with commercial applications in cosmetics, flavoring ingredients, and medicines. Regulation of mevalonate (MVA) pathway metabolic flux is a common strategy to engineer Saccharomyces cerevisiae for efficient linalool production. However, metabolic regulation of the MVA pathway is complex and involves competition for central carbon metabolism, resulting in limited contents of target metabolites. RESULTS: In this study, first, a truncated linalool synthase (t26AaLS1) from Actinidia arguta was selected for the production of linalool in S. cerevisiae. To simplify the complexity of the metabolic regulation of the MVA pathway and increase the flux of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), we introduced the two-step isopentenyl utilization pathway (IUP) into S. cerevisiae, which could produce large amounts of IPP/DMAPP. Further, the S. cerevisiae IDI1 (ecoding isopentenyl diphosphate delta-isomerase) and ERG20F96W-N127W (encoding farnesyl diphosphate synthase) genes were integrated into the yeast genome, combined with the strategies of copy number variation of the t26AaLS1 and ERG20F96W-N127W genes to increase the metabolic flux of the downstream IPP, as well as optimization of isoprenol and prenol concentrations, resulting in a 4.8-fold increase in the linalool titer. Eventually, under the optimization of carbon sources and Mg2+ addition, a maximum linalool titer of 142.88 mg/L was obtained in the two-phase extractive shake flask fermentation. CONCLUSIONS: The results show that the efficient synthesis of linalool in S. cerevisiae could be achieved through a two-step pathway, gene expression adjustment, and optimization of culture conditions. The study may provide a valuable reference for the other monoterpenoid production in S. cerevisiae.


Assuntos
Ácido Mevalônico , Saccharomyces cerevisiae , Monoterpenos Acíclicos , Carbono/metabolismo , Variações do Número de Cópias de DNA , Difosfatos/metabolismo , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Hemiterpenos , Engenharia Metabólica/métodos , Ácido Mevalônico/metabolismo , Monoterpenos/metabolismo , Compostos Organofosforados , Pentanóis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
10.
Plant J ; 112(1): 207-220, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35960639

RESUMO

Zea mays (maize) makes phytoalexins such as sesquiterpenoid zealexins, to combat invading pathogens. Zealexins are produced from farnesyl diphosphate in microgram per gram fresh weight quantities. As farnesyl diphosphate is also a precursor for many compounds essential for plant growth, the question arises as to how Z. mays produces high levels of zealexins without negatively affecting vital plant systems. To examine if specific pools of farnesyl diphosphate are made for zealexin synthesis we made CRISPR/Cas9 knockouts of each of the three farnesyl diphosphate synthases (FPS) in Z. mays and examined the resultant impacts on different farnesyl diphosphate-derived metabolites. We found that FPS3 (GRMZM2G098569) produced most of the farnesyl diphosphate for zealexins, while FPS1 (GRMZM2G168681) made most of the farnesyl diphosphate for the vital respiratory co-factor ubiquinone. Indeed, fps1 mutants had strong developmental phenotypes such as reduced stature and development of chlorosis. The replication and evolution of the fps gene family in Z. mays enabled it to produce dedicated FPSs for developmentally related ubiquinone production (FPS1) or defense-related zealexin production (FPS3). This partitioning of farnesyl diphosphate production between growth and defense could contribute to the ability of Z. mays to produce high levels of phytoalexins without negatively impacting its growth.


Assuntos
Geraniltranstransferase , Sesquiterpenos , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Fosfatos de Poli-Isoprenil , Sesquiterpenos/metabolismo , Terpenos/metabolismo , Ubiquinona/metabolismo , Zea mays/genética , Zea mays/metabolismo , Fitoalexinas
11.
Mol Med ; 28(1): 94, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962329

RESUMO

BACKGROUND: The proliferation ability and autophagy level of pulmonary artery endothelial cells (PAECs) play an important role in promoting the development of pulmonary artery hypertension (PAH), and there is still no effective treatment for PAH. Farnesyl diphosphate synthase (FDPS) is a key enzyme in the mevalonate pathway. The intermediate metabolites of this pathway are closely related to the activity of autophagy-associated small G proteins, including Ras-related C3 botulinum toxin substrate 1 (Rac1). Studies have shown that the mevalonate pathway affects the activation levels of different small G proteins, autophagy signaling pathways, vascular endothelial function, and so on. However, the exact relationship between them is still unclear in PAH. METHOD: In vitro, western blotting and mRFP-GFP-LC3 puncta formation assays were used to observe the expression of FDPS and the level of autophagy in PAECs treated with monocrotaline pyrrole (MCTP). In addition, cell proliferation and migration assays were used to assess the effect of FDPS on endothelial function, and Rac1 activity assays were used to evaluate the effect of Rac1 activation on PAEC autophagy via the PI3K/AKT/mTOR signaling pathway. In vivo, the right heart catheterization method, hematoxylin and eosin (H&E) staining and western blotting were used to determine the effect of FDPS on PAEC autophagy and monocrotaline (MCT)-induced PAH. RESULTS: We show that the expression of FDPS is increased in the PAH module in vitro and in vivo, concomitant with the induction of autophagy and the activation of Rac1. Our data demonstrate that inhibition of FDPS ameliorates endothelial function and decreases MCT-induced autophagy levels. Mechanistically, we found that FDPS promotes autophagy, Rac1 activity and endothelial disfunction through the PI3K/AKT/mTOR signaling pathway. CONCLUSION: Our study suggests that FDPS contributes to active small G protein-induced autophagy during MCT-induced PAH, which may serve as a potential therapeutic target against PAH.


Assuntos
Hipertensão Pulmonar , Proteínas Monoméricas de Ligação ao GTP , Hipertensão Arterial Pulmonar , Animais , Autofagia , Proliferação de Células , Células Endoteliais/metabolismo , Geraniltranstransferase/metabolismo , Geraniltranstransferase/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Ácido Mevalônico/farmacologia , Ácido Mevalônico/uso terapêutico , Monocrotalina/efeitos adversos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Monoméricas de Ligação ao GTP/farmacologia , Proteínas Monoméricas de Ligação ao GTP/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar , Ratos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/metabolismo
12.
Chem Commun (Camb) ; 58(27): 4316-4319, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35262160

RESUMO

The biosynthesis of 2-methylisoborneol was reconstituted by elongation of dimethylallyl diphosphate (DMAPP) with (S)- and (R)-2-methylisopentenyl diphosphate (2-Me-IPP) using farnesyl diphosphate synthase (FPPS), followed by terpene cyclisation. The stereochemical course of the FPPS reaction was studied in detail using stereoselectively deuterated 2-Me-IPP isotopomers.


Assuntos
Canfanos , Geraniltranstransferase , Canfanos/síntese química , Difosfatos/metabolismo , Geraniltranstransferase/metabolismo , Terpenos/química , Terpenos/metabolismo
13.
EBioMedicine ; 75: 103772, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34971971

RESUMO

BACKGROUND: Radiation therapy (RT) has a suboptimal effect in patients with pancreatic ductal adenocarcinoma (PDAC) due to intrinsic and acquired radioresistance (RR). Comprehensive bioinformatics and microarray analysis revealed that cholesterol biosynthesis (CBS) is involved in the RR of PDAC. We now tested the inhibition of the CBS pathway enzyme, farnesyl diphosphate synthase (FDPS), by zoledronic acid (Zol) to enhance radiation and activate immune cells. METHODS: We investigated the role of FDPS in PDAC RR using the following methods: in vitro cell-based assay, immunohistochemistry, immunofluorescence, immunoblot, cell-based cholesterol assay, RNA sequencing, tumouroids (KPC-murine and PDAC patient-derived), orthotopic models, and PDAC patient's clinical study. FINDINGS: FDPS overexpression in PDAC tissues and cells (P < 0.01 and P < 0.05) is associated with poor RT response and survival (P = 0.024). CRISPR/Cas9 and pharmacological inhibition (Zol) of FDPS in human and mouse syngeneic PDAC cells in conjunction with RT conferred higher PDAC radiosensitivity in vitro (P < 0.05, P < 0.01, and P < 0.001) and in vivo (P < 0.05). Interestingly, murine (P = 0.01) and human (P = 0.0159) tumouroids treated with Zol+RT showed a significant growth reduction. Mechanistically, RNA-Seq analysis of the PDAC xenografts and patients-PBMCs revealed that Zol exerts radiosensitization by affecting Rac1 and Rho prenylation, thereby modulating DNA damage and radiation response signalling along with improved systemic immune cells activation. An ongoing phase I/II trial (NCT03073785) showed improved failure-free survival (FFS), enhanced immune cell activation, and decreased microenvironment-related genes upon Zol+RT treatment. INTERPRETATION: Our findings suggest that FDPS is a novel radiosensitization target for PDAC therapy. This study also provides a rationale to utilize Zol as a potential radiosensitizer and as an immunomodulator in PDAC and other cancers. FUNDING: National Institutes of Health (P50, P01, and R01).


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/radioterapia , Linhagem Celular Tumoral , Proliferação de Células , Dano ao DNA , Regulação Neoplásica da Expressão Gênica , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Humanos , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/radioterapia , Transdução de Sinais , Microambiente Tumoral/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
14.
J Med Chem ; 64(24): 17627-17655, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34894691

RESUMO

Toxoplasmosis, an infectious zoonotic disease caused by the apicomplexan parasite Toxoplasma gondii (T. gondii), is a major worldwide health problem. However, there are currently no effective options (chemotherapeutic drugs or prophylactic vaccines) for treating chronic latent toxoplasmosis infection. Accordingly, seeking more effective and safer chemotherapeutics for combating this disease remains a long-term and challenging objective. In this paper, we summarize possible molecular biotargets, with an emphasis on those that are druggable and promising, including, without limitation, calcium-dependent protein kinase 1, bifunctional thymidylate synthase-dihydrofolate reductase, and farnesyl diphosphate synthase. Meanwhile, as important components of medicinal chemistry, the binding modes and structure-activity relationship profiles of the corresponding inhibitors were also illuminated. We anticipate that this information will be helpful for further identification of more effective chemotherapeutic interventions to prevent and treat zoonotic infections caused by T. gondii.


Assuntos
Antiprotozoários/uso terapêutico , Toxoplasmose/tratamento farmacológico , Animais , Inibidores Enzimáticos/farmacologia , Geraniltranstransferase/efeitos dos fármacos , Geraniltranstransferase/metabolismo , Humanos , Complexos Multienzimáticos/efeitos dos fármacos , Complexos Multienzimáticos/metabolismo , Proteínas Quinases/efeitos dos fármacos , Proteínas Quinases/metabolismo , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/efeitos dos fármacos , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidilato Sintase/efeitos dos fármacos , Timidilato Sintase/metabolismo , Toxoplasma/enzimologia
15.
J Pathol ; 255(4): 438-450, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34467534

RESUMO

The mevalonate pathway is essential for cholesterol biosynthesis. Previous studies have suggested that the key enzyme in this pathway, farnesyl diphosphate synthase (FDPS), regulates the cardiovascular system. We used human samples and mice that were deficient in cardiac FDPS (c-Fdps-/- mice) to investigate the role of FDPS in cardiac homeostasis. Cardiac function was assessed using echocardiography. Left ventricles were examined and tested for histological and molecular markers of cardiac remodeling. Our results showed that FDPS levels were downregulated in samples from patients with cardiomyopathy. Furthermore, c-Fdps-/- mice exhibited cardiac remodeling and dysfunction. This dysfunction was associated with abnormal activation of Ras and Rheb, which may be due to the accumulation of geranyl pyrophosphate. Activation of Ras and Rheb stimulated downstream mTOR and ERK pathways. Moreover, administration of farnesyltransferase inhibitors attenuated cardiac remodeling and dysfunction in c-Fdps-/- mice. These results indicate that FDPS plays an important role in cardiac homeostasis. Deletion of FDPS stimulates the downstream mTOR and ERK signaling pathways, resulting in cardiac remodeling and dysfunction. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Cardiomiopatias/patologia , Proteínas de Ligação ao GTP/metabolismo , Geraniltranstransferase/metabolismo , Remodelação Ventricular/fisiologia , Animais , Humanos , Camundongos
16.
ACS Synth Biol ; 10(5): 957-963, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33973783

RESUMO

Nootkatone is a valuable sesquiterpene widely used in the food, fragrance, and flavor industries. Its price is very high due to its limited production in grapefruit peels or Alaska cypress heartwoods. Chemical synthesis of nootkatone uses heavy metals, highly flammable compounds, and strong oxidants, which cause severe damage to the environment. In this study, nootkatone is synthesized in Artemisia annua, using synthetic biology methods. Engineered Artemisia annua coexpressing valencene synthase (VS) and valencene oxidase (VO) in the cytosol produced nootkatone ranging from 0.89 to 8.52 µg/g fresh weight (FW). Furthermore, transgenic Artemisia annua coexpressing farnesyl diphosphate synthase (FPS), VS, and VO in plastids produced nootkatone ranging from 12.11 to 47.80 µg/g FW. These results indicated that engineering nootkatone biosynthesis in plastids was superior to that in the cytosol. Meanwhile, artemisinin production was unaltered in nootkatone-producing Artemisia annua. Our study developed a green approach for producing nootkatone in Artemisia annua with great market potential.


Assuntos
Artemisia annua/metabolismo , Engenharia Metabólica/métodos , Sesquiterpenos Policíclicos/metabolismo , Alquil e Aril Transferases/metabolismo , Artemisia annua/genética , Artemisininas/análise , Artemisininas/química , Artemisininas/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Citosol/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Geraniltranstransferase/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Sesquiterpenos Policíclicos/análise , Sesquiterpenos Policíclicos/química , Sesquiterpenos/metabolismo , Biologia Sintética/métodos
18.
Cell Biol Int ; 45(7): 1393-1403, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33595160

RESUMO

Farnesyl pyrophosphate synthase (FPPS)-catalyzed isoprenoid intermediates are involved in diabetic cardiomyopathy. This study investigated the specific role of FPPS in the development of diabetic cardiomyopathy. We demonstrated that FPPS expression was elevated in both in vivo and in vitro models of diabetic cardiomyopathy. FPPS inhibition decreased the expression of proteins related to cardiac fibrosis and cardiomyocytic hypertrophy, including collagen I, collagen III, connective tissue growth factor, natriuretic factor, brain natriuretic peptide, and ß-myosin heavy chain. Furthermore, FPPS inhibition and knockdown prevented phosphorylated c-Jun N-terminal kinase 1/2 (JNK1/2) activation in vitro. In addition, a JNK1/2 inhibitor downregulated high-glucose-induced responses to diabetic cardiomyopathy. Finally, immunofluorescence revealed that cardiomyocytic size was elevated by high glucose and was decreased by zoledronate, small-interfering farnesyl pyrophosphate synthase (siFPPS), and a JNK1/2 inhibitor. Taken together, our findings indicate that FPPS and JNK1/2 may be part of a signaling pathway that plays an important role in diabetic cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas/enzimologia , Geraniltranstransferase/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Ratos , Ratos Sprague-Dawley
19.
J Cardiovasc Pharmacol ; 77(2): 142-152, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33538531

RESUMO

ABSTRACT: Isoprenylation is an important post-transcriptional modification of small GTPases required for their activation and function. Isoprenoids, including farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate, are indispensable for isoprenylation by serving as donors of a prenyl moiety to small G proteins. In the human body, isoprenoids are mainly generated by the mevalonate pathway (also known as the cholesterol-synthesis pathway). The hydroxymethylglutaryl coenzyme A reductase catalyzes the first rate-limiting steps of the mevalonate pathway, and its inhibitor (statins) are widely used as lipid-lowering agents. In addition, the FPP synthase is also of critical importance for the regulation of the isoprenoids production, for which the inhibitor is mainly used in the treatment of osteoporosis. Synthetic FPP can be further used to generate geranylgeranyl pyrophosphate and cholesterol. Recent studies suggest a role for isoprenoids in the genesis and development of cardiovascular disorders, such as pathological cardiac hypertrophy, fibrosis, endothelial dysfunction, and fibrotic responses of smooth-muscle cells. Furthermore, statins and FPP synthase inhibitors have also been applied for the management of heart failure and other cardiovascular diseases rather than their clinical use for hyperlipidemia or bone diseases. In this review, we focus on the function of several critical enzymes, including hydroxymethylglutaryl coenzyme A reductase, FPP synthase, farnesyltransferase, and geranylgeranyltransferase in the mevalonate pathway which are involved in regulating the generation of isoprenoids and isoprenylation of small GTPases, and their pathophysiological role in the cardiovascular system. Moreover, we summarize recent research into applications of statins and the FPP synthase inhibitors to treat cardiovascular diseases, rather than for their traditional indications respectively.


Assuntos
Sistema Cardiovascular/enzimologia , Farnesiltranstransferase/metabolismo , Geraniltranstransferase/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo , Ácido Mevalônico/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Colesterol/metabolismo , Humanos , Fosfatos de Poli-Isoprenil/metabolismo , Prenilação de Proteína , Sesquiterpenos/metabolismo
20.
J Agric Food Chem ; 69(3): 1003-1010, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33427461

RESUMO

Linalool, as a fragrant monoterpene, is an important feedstock for food, pharmaceuticals, and cosmetics industries. Although our previous study had significantly increased linalool production by the directed evolution of linalool synthase and overexpression of the whole mevalonate pathway genes, the engineered yeast strain suffered from dramatically reduced biomass. Herein, a stress-free linalool-producing yeast cell factory was constructed by the combinational regulation of linalool synthase and farnesyl diphosphate synthase instead of multienzyme overexpression. First, the expression level of linalool synthase was successfully enhanced by introducing a N-terminal SKIK tag, which improved linalool production by 3.3-fold. Subsequently, the modular assembly of linalool synthase and dominant negative farnesyl diphosphate synthase via short peptide tags efficiently converted geranyl pyrophosphate to linalool. Additional downregulation of the native farnesyl diphosphate synthase led to the highest reported linalool production (80.9 mg/L) in yeast. This combinatorial modulation strategy may also be applied to the production of other high-value monoterpenes.


Assuntos
Monoterpenos Acíclicos/metabolismo , Geraniltranstransferase/metabolismo , Hidroliases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Geraniltranstransferase/genética , Hidroliases/genética , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...